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A B S T R A C T   

In interface coupled dissolution-precipitation systems, the dynamics of the mineral-fluid interface depends on 
two intertwining processes: the dissolution of the primary mineral that is needed for subsequent precipitation 
and the passivation of the dissolution reaction as a result of secondary mineral precipitation. The resulting 
thickness and texture of the precipitating coating layer will affect the progression of geochemical reactions, flow 
and transport processes at the macroscopic scale. Understanding the interplay between macroscopic flow regimes 
and microscopic reaction mechanisms (e.g., nucleation and crystal growth pathways) in controlling the dynamics 
of the mineral-fluid interface has important implications for predicting natural weathering processes, scaling in 
the subsurface energy production systems, etc. In this study, we use a micro-continuum pore-scale reactive 
transport model to investigate the feedback loop between reaction rate and solute transport with explicit 
consideration of the surface passivation and the diffusion process through the coating layer, as well as the im-
pacts of saturation-dependent nucleation rate on the textures of precipitates that will largely dictate the diffusion 
properties of the coating layer. Our model results highlight that the drastically different coating behaviors at the 
macroscopic scale and their dependence on solution supersaturation observed in previous column experiments 
are primarily controlled by the interplay between mineral reaction rates, advective flow, and diffusion through 
the dynamically forming coating layer. The diffusion properties of the coating layer also play a secondary but 
non-negligible role in shaping the evolution of the co-dissolution and precipitation system. The probabilistic 
nucleation model building on the framework of classical nucleation theory highlights the complex dependence of 
precipitates’ texture on solution chemistry and substrate properties, which can affect the diffusion process within 
the precipitates. The modeling observations also underscore the necessity of further investigations to better 
characterize the properties of the coating layer and to improve modeling descriptions of the nucleation processes.   

1. Introduction 

Interface-coupled dissolution and precipitation (ICDP) reactions are 
characterized by the dissolution and retreating of the primary mineral 
surface, coupled with the precipitation of a secondary mineral as a rim 
(mineral coating) on the surface. The thickness, texture, and tortuosity 
of the rim control the exchange between the pore fluid and the under-
lying mineral phases, and thus further mineralogical reactions. ICDP 
processes play an important role in fluid-rock reactions with implica-
tions in various geological and environmental settings (Forjanes et al., 
2020; Renard et al., 2019). For instance, carbonate mineralization 
following the release of cations from mineral dissolution is a key 

trapping mechanism in geologic carbon storage reservoirs (Metz et al., 
2005), and is a crucial process that is involved in many negative emis-
sion technologies (Kelemen et al., 2019; National Academies of Sciences, 
Engineering, and Medicine, 2019) and the degradation of cement and 
concrete materials (Perko et al., 2020; Qiu, 2020). ICDP reactions may 
affect the effectiveness of flow pathways (e.g., fractures and pipelines) 
and thus production in unconventional oil and gas reservoirs (Xiong 
et al., 2021). Therefore, understanding the factors that regulate the 
development of the mineral coating (i.e., the rim) is critical for pre-
dicting the geochemical reactions and the resulting impacts on various 
geological and environmental systems over geological time scale. 

Reactive transport models can capture the intricate interplay 
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between reaction kinetics and transport mechanisms including flow and 
diffusion, thus providing a valuable tool for in-depth examinations and 
predictions of these systems (Deng et al., 2021a). However, accurate 
representation of mineral dissolution and crystallization (nucleation and 
crystal growth) in porous media is still challenging (Deng and Spycher, 
2019; Noiriel and Soulaine, 2021; Seigneur et al., 2019; Soulaine et al., 
2021). The complexity arises from the dependence of reaction mecha-
nisms on multiple factors, including fluid flow, fluid chemistry and the 
mineral substrate. Fluid flow controls the mixing of solutes in the pore 
fluid and can make homogeneous nucleation more favorable than het-
erogeneous nucleation (Poonoosamy et al., 2020c). The hydrodynamics 
of the system can also dictate the polymorphism of minerals (Zhang 
et al., 2010) and crystal morphology (Poonoosamy et al., 2019). Fluid 
chemistry, in particular the saturation state with respect to the precip-
itating phase (Poonoosamy et al., 2016), directly influences nucleation 
mechanisms and reaction kinetics. The mineral substrate can control 
mineral growth by acting as a crystallographic template for further 
crystallization of minerals (Nooraiepour et al., 2021b). For example, 
calcite precipitated preferentially in a porous medium constituted of 
calcite crystals compared to one composed of aragonite ooids (Noiriel 
et al., 2012). Mineral precipitation mechanisms have also been shown to 
depend on the pore size (Rajyaguru et al., 2019). 

The description of ICDP in reactive transport models (Varzina et al., 
2020) is non-trivial also because the aforementioned factors and com-
plex transport and system dynamics intervene simultaneously. A reac-
tive transport experimental benchmark capturing ICDP was described in 
(Poonoosamy et al., 2020b) where the effect of fluid chemistry on the 
dissolution of celestite and epitaxial growth of barite was investigated. 
The results showed a non-linear relationship between the thickness of 
the barite rim and the solution saturation with respect to barite. Even in 
such an advective system, fluid velocity approaches zero at the mineral 
surface and thus diffusion becomes the dominant mechanism for mass 
transfer at the mineral-fluid interface and controls the development of 
precipitation front into the matrix (Deng et al., 2018; Poonoosamy et al., 
2020a). Reactants diffuse through the dynamically forming and 
nano-micro porous coating layer, enabling dissolution and precipitation 
to continue (Poonoosamy et al., 2020b), but at much slower rates. The 
other cause for slower reaction rates observed in ICDP systems is the 
decrease of reactive surface area of the dissolving phase because the 
coating layer can prevent physical contact with the reactive fluid. 

The two main modeling approaches to simulate ICDP are continuum- 
scale models and pore-scale models. In continuum scale models, the 
passivation of the subsequent reactions resulting from the rim can be 
accounted for by using a rate constant that is dependent on diffusion 
through the rim layer, following the shrinking core model (Mayer et al., 
2001). Another treatment for reaction passivation is to constrain the 
effective reactive surface area by allowing it to decrease with the 
amount of the remaining dissolving mineral phase while the amount of 
the precipitating mineral phase increases (Daval et al., 2009; Harrison 
et al., 2015). These treatments, however, do not explicitly account for 
the interplay between diffusion and other important chemical-physical 
processes, and were not able to capture the distinct rim patterns 
developed under different supersaturations (Poonoosamy et al., 2020b). 

Pore-scale reactive transport models can capture the interplay be-
tween mineral reactions, flow, diffusion, and pore geometries (Deng 
et al., 2018; Molins et al., 2021; Molins et al., 2012; Molins et al., 2014; 
Noiriel and Soulaine et al., 2021), and controlled numerical experiments 
using pore-scale reactive transport models can isolate individual factors 
involved in the ICDP systems. This is particularly critical given that 
direct observation and quantification of diffusion through the coating 
layer in ICDP is difficult. Pore scale reactive transport modeling has been 
used to investigate various aspects of mineral crystallization in porous 
media. Most studies are based on the Lattice Boltzmann method. For 
instance, (Yoon et al., 2012) modeled mixing induced precipitation of 
calcite reproducing experimentally observed patterns and rates, and 
(Chen et al., 2014) compared random crystal growth versus 

crystallographic direction oriented growth in a diffusive system with 
co-dissolution and precipitation. The Classical Nucleation Theory (CNT) 
was also integrated into LBM to examine the effect of pore-size and so-
lution saturation ratio on nucleation mechanisms (Prasianakis et al., 
2017) with a probabilistic approach (Fazeli et al., 2020). 

Recently, the so-called micro-continuum approach for the simula-
tions of pore-scale reactive transport processes has gained popularity, 
particularly in systems where mineral precipitation is relevant (Deng 
et al., 2021b; Yang et al., 2021). The micro-continuum formulation al-
leviates some challenges of tracking the solid-fluid interfaces resulting 
from mineral precipitation that are faced by some pore-scale models. 
(Yang et al., 2021) investigated the impacts of advective flow and 
diffusion in the pore space, as well as reaction rate on crystal growth of 
barite. It was observed that the increase in reaction rate and advective 
transport are more efficient in promoting crystal growth compared to 
diffusive transport. By implementing reaction rates that depend on 
crystallographic orientation, the model was able to preserve the shape of 
the crystal. However, nucleation was not explicitly considered in this 
work. (Deng et al., 2021b) focused on a diffusive system, while including 
crystal growth as well as homogeneous nucleation based on the CNT. 
Their modeling results reproduced precipitation patterns in porous 
media that have been observed in previous experimental studies (Noiriel 
et al., 2012; Rajyaguru et al., 2019; Zhang et al., 2010), and offered a 
tool for numerical experiments on precipitation driven diffusivity 
change in porous media. 

In this study, we build upon recent development in micro-continuum 
pore-scale reactive transport models that include precipitation dynamics 
in order to examine the dynamics of ICDP systems. Our objectives are 
two-fold. First, we evaluate whether the interactions between reaction 
kinetics and solute transport at the pore scale can explain the dynamics 
of co-dissolution and precipitation observed experimentally, i.e., the 
strong dependence of the macroscopic patterns on solution supersatu-
ration (Poonoosamy et al., 2020b). For this purpose, the model was 
adapted to capture the grain scale process of coating and diffusion, while 
considering the macroscopic flow and chemistry. Second, we explore 
how the chemistry of the system – specifically saturation state and 
substrate properties - can potentially affect nucleation processes, and 
thus the texture of the precipitates and diffusion through the coating 
layer. To this end, the model was expanded to combine the classical 
nucleation theory approach and a probabilistic nucleation module. 
Section 2 presents the model details and the simulation setup, and 
Section 3 presents the simulation results and a discussion of the 
dependence of precipitation patterns and nucleation dynamics on fluid 
chemistry and kinetic parameters. We conclude our study in Section 4. 

2. Methods 

In this section, we first present the micro-continuum model (section 
2.1) and the mathematical descriptions of the precipitation reaction 
(sections 2.2-2.3). The model description is then followed by a detailed 
documentation of the simulation setups for the two modeling tasks 
corresponding to the dual objectives of our study. The two sets of sim-
ulations (section 2.4 and 2.5) both use the micro-continuum model and 
differ in the mathematical description of the precipitation reaction, 
using the formulations in section 2.2 and 2.3, respectively. 

2.1. Micro-continuum model 

In the micro-continuum simulations, the interface between the pore- 
water and the parent mineral phase can be explicitly tracked, and thus 
the development of the precipitation layer and diffusion through the 
coating layer can be explicitly modeled. The micro-continuum model 
was previously developed for a diffusive system within the reactive 
transport code CrunchTope (Deng et al., 2021b). For simulations of 
systems with advective flow, the CrunchTope model was coupled with 
COMSOL Multiphysics using MATLAB Livelink (v5.6) (Zhang et al., 
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2022). In the coupled modeling framework, the Darcy-Brinkman equa-
tion (eqn (1)) is firstly solved in COMSOL Multiphysics for the velocity 
field, which is imported into CrunchTope for solving the 
advection-diffusion-reaction equation (eqn (2)). These two codes are 
coupled sequentially following the operator splitting approach (Zhang 
et al., 2022). The coupling time step is relatively coarse following the 
quasi-steady state assumption, i.e., within the coupling time step, it is 
assumed that precipitation does not change the flow field significantly. 
In our simulations, finer time steps on the order of hours were used at the 
beginning of the simulation, which increased to 50 h after 200 h of 
simulation time. The precipitation patterns as will be presented later 
support the selection of the coupling time step. 

1
φ

(

ρ ∂u
∂t

+ ρu ⋅∇
(u

φ

))

= − ∇p+
μ
φ
∇2u −

μ
k

u eqn(1)  

where φ (i.e., local porosity) is the volume fraction of the fluid in the grid 
cell. It is 1.0 in the pore space, 0.0 inside the initial primary mineral 
phase, and is a fractional value as precipitation progresses and occupies 
part of the grid cell and as the primary mineral phase dissolves gradually 
(Fig. 1a). A non-zero minimum porosity can be set such that the sec-
ondary mineral does not fill the grid cells completely. This is assuming 
that the precipitates are porous, which can be a result of the pore-size 
controlled solubility (PCS) effect and/or local transport limitations 
(Deng et al., 2021b; Varzina et al., 2020). A value of 10% was used 
unless specified otherwise. While no direct observations are available for 
the system that we are modeling, this value is comparable to reported 
values of residual porosity resulting from the PCS effect for calcium 
carbonate precipitates (Varzina et al., 2020). u is the pore velocity, p is 
the pressure, ρ and μ are the density and viscosity of the fluid, respec-
tively. k is the permeability tensor in the medium, and is estimated based 
on the local porosity using a power law relationship (k = 0.01φ5). This 
relationship is somewhat arbitrary as flow in the porous precipitates is 
not the focus of our study and our goal is to capture the pore flow. Ac-
curate pore flow velocity field can be achieved if the permeability in the 
pore space and that in the mineral matrix differ by more than four orders 
of magnitude (Soulaine et al., 2017). 

∂φΨi

∂t
= − ∇ ⋅ (uφΨi)+∇ ⋅ (φDi∇Ψi) − ϑiRi eqn(2)  

where Ψi is the total concentration of a chemical component, Di is the 
diffusion coefficient, which is equal to the molecular diffusion coeffi-
cient (Dm) in the pore space, and is Dmφm in grid cells occupied by the 
precipitates to account for the tortuosity caused by the presence of the 

solid phase. The exponent m was set to be 2 unless specified otherwise. 
The last term on the right-hand side is the reaction term that accounts for 
the concentration change caused by mineral reactions, with ϑi being the 
stoichiometric coefficient. 

2.2. Mineral growth 

Mineral precipitation and dissolution can both be described by the 
transition state theory rate law, 

Ri =Akrxn

(

1 −
IAP
Ksp

)

eqn(3)  

where krxn [mol /m2s] is the rate constant, IAP is the ionic activity 
product, and Ksp is the solubility. The solubilities for celestite and barite 
are 10− 6.63 and 10− 9.97 at 25 C, respectively, as used in the experimental 
study of (Poonoosamy et al., 2020b). In the micro-continuum approach, 
the surface area (A [m2 /m3]) is calculated from the spatial gradient of 
porosity (φ) (eqn (4)) (Deng et al., 2021b; Luo et al., 2012; Soulaine 
et al., 2017), and the reactive surface area of a given mineral (Ai) is 
weighted by the five point average of the volumetric fraction of the 
corresponding mineral (fvi ) (Fig. 1b) (eqn (5)). As such, the coating of 
the parent mineral phase and thus the passivation of its dissolution is 
explicitly accounted for. 

A=∇φ eqn(4)  

Ai =A⋅fvi eqn(5)  

2.3. Probabilistic nucleation 

Classical nucleation theory (eqn (6)) rather than the transition state 
theory rate law may be used to describe the precipitation process. For 
the celestite-barite mineral system investigated, the precipitation pro-
cess involves the heterogeneous nucleation of barite on celestite and on 
barite. Homogeneous nucleation is not considered because of the much 
higher energetic barrier. The heterogeneous nucleation rate [mol/m2 

substrate s] is calculated from the following equations (Prieto, 2014): 

J =Γexp
(

−
ΔGc

kT

)

eqn(6)  

where k is the Boltzmann constant, T is the temperature [K]. The Gibbs 
free energy term is given as follows: 

Fig. 1. (a) Conceptual illustration of the micro-continuum approach, in which a local porosity field (φ) is used to represent the mineral grain (gray solid), the pore 
space, and the interface where precipitation (brown solid) occurs; and (b) illustration of the five-point weighting scheme, the cell for which the mineral specific area 
is calculated is highlighted in light blue, and the thick blue lines outline the five grid cells, the mineral fractions of which are used in the calculation of eqn (5). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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ΔGc =
16πv0

2γ3

3(kTlnΩ)
2 eqn(7)  

where v0 is the molecular volume, γ is the effective surface tension, and 
Ω = IAP

Ksp 
is the supersaturation. 

The pre-exponential term (Γ) is a function of the nucleation sites 
density (N0, [# nuclei/m2substrate]), the number of monomers per unit 
volume of fluid (N1, [# monomers/m3 fluid]), and the diffusion coeffi-
cient of the monomer (D). N0 is approximated by dividing the unit 
surface area by the cross-section area of the critical nuclei, and N1 can be 
readily calculated from the local concentration of the monomer. Z in the 
equation is a function of the Gibbs free energy and the number of the 
critical nuclei (nc). The radius of the critical nuclei (rc) is given by eqn 
(11). 

Γ = 4πZDN0N1rc eqn(8)  

Z =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ΔGc

3πkT(nc)
2

)√
√
√
√ eqn(9)  

nc =

(
2σa

3kTlnΩ

)3

eqn(10)  

rc =
2σv0

kTlnΩ
eqn(11) 

In conjunction with the CNT, a probabilistic approach is included. 
Similar to (Fazeli et al., 2020; Nooraiepour et al., 2021a), a random 
variable that follows a normal distribution (x ∈ N(0, 1)) is used to 
introduce a stochastic induction time (τp) based on the induction time 
given by the theoretical calculation following the CNT (τN) 

τp =
x + nσ

nσ ⋅τN eqn(12)  

where σ is the standard deviation of the normal distribution and equals 
to 1 in our case, and n = 4, capturing 99.9% of the population in the 
normal distribution. As a result, the probabilistic induction time falls in 
(0, 2τN]. Instead of using the induction time to update the surface area of 
the nuclei and a deterministic crystal growth rate as in (Fazeli et al., 
2020), our model simulates the precipitation rate as heterogeneous 
nucleation of the barite on both celestite and barite, and the nucleation 
rates are calculated from the CNT rate laws (eqn(6-11)) and adjusted 
according to the probabilistic induction time. 

Jp = J⋅
τN

τp
eqn(13) 

Thus, in the probabilistic modeling of the precipitation reaction, the 
reaction rate is given by 

Ri =
∑

j
Aj⋅Jp,j eqn(14)  

where subscript j denotes the substrate for the nucleation of barite. 

2.4. Streamline simulations 

These simulations were designed to investigate the evolution of 
distinct coating patterns along the flow direction under different su-
persaturation conditions as reported in (Poonoosamy et al., 2020b), and 
thus they follow the chemical and flow conditions of the column ex-
periments. In the experiments, celestite grains with size of ~50 μm were 
packed in a 1.1 cm long column with a porosity of 46 ± 2%. Influents of 
different BaCl2 concentrations (1 mM, 10 mM, and 100 mM) were 
injected at the same flow rate of 2.5 × 10− 10 m3/s through the column, 
resulting in celestite dissolution and barite precipitation on the 
remaining celestite grains. Rather than a direct simulation of the spatial 

complexity of the experimental system, we focus on the simulation of 
precipitation along a flow path that follows the tortuous pore space 
existing between the celestite grains as supersaturation conditions 
evolve. The geometry used in our simulations (Fig. 2 a&b) is equivalent 
to following a streamline (Poonoosamy et al., 2020a). 

Based on the grain size and porosity of the celestite column used in 
the experiment, the width of the domain was set to 50 μm. Half of the 
domain was initially occupied by the celestite mineral phase and the 
other half by DI water. The computational domain was 5 cm long, which 
is equivalent of assuming a tortuosity factor of approximately five for the 
celestite column. The tortuosity factor measures the ratio between the 
length of the streamline and the length of the column, and is usually 
inferred from effective diffusivity. The value used here is based on the 
diffusivity measurements for packed quartz sand columns with similar 
porosities in prior experiments (Chagneau et al., 2015), and thus pro-
vides a reasonable approximation. The flow and reactive transport are 
described by eqns (1) and (2) and celestite dissolution and barite pre-
cipitation are both described by eqn (3). The kinetic coefficients (krxn) 
have values of 10− 5.66 mol/m2s for celestite (Marty et al., 2015), and 
10− 7.9 mol/m2s for barite (Palandri, 2004). 

2.5. Probabilistic nucleation simulations 

In order to investigate the impacts of local chemical conditions on 
nucleation processes near the mineral surface - and thus the texture of 
the precipitates - we used a shorter section of the streamline domain 
(Fig. 2c), which allows for a resolution of 0.5 μm using a 100 × 100 grid. 
The domain is divided into two halves, occupied by celestite and DI 
water initially, respectively. It is similar to what is illustrated in Fig. 2b, 
but with different dimensions and resolution. For simplicity, advective 
flow was not considered in the nucleation simulations. Celestite disso-
lution was modeled by the same kinetic treatment as described in section 
2.4., i.e., using eqn (3). Barite precipitation, however, is described with 
eqns(6-14). The effective surface tension (γ) is 45 mJ/m2 for the 
celestite-barite interface (Poonoosamy et al., 2016), and 22.8 mJ/m2 for 
the barite-barite interface (Ruiz-Agudo et al., 2015). D is 0.963 × 10− 9 

m2/s, and N0 is ~4.2453 × 1018 nuclei/m2substrate. Since it uses a finer 
resolution with very small grid cells, precipitation within each grid cell 
is allowed to progress unless local porosity approaches zero. In the 
process, the diffusivity is corrected by the local porosity (i.e., Dmφ). 

The left boundary is connected to a BaCl2 solution, and the right 
boundary is in contact with DI water. Three subsets of simulations were 
performed to investigate the impacts of the saturation state and the 
properties of the substrate. BaCl2 concentrations of 10 mM and 100 mM 
were compared, and an additional subset was simulated with the high 
BaCl2 concentration but lowering the nucleation site density on celestite 
(N0) by 1000 times. For each simulation scenario, 30 realizations were 
conducted. 

Table 1 compares the setup of the streamline and the probabilistic 
nucleation simulations to highlight the major differences. 

3. Results & discussion 

3.1. Dependence of coating patterns on solution supersaturation 

Overall, the simulations captured the major observations from the 
experimental study of (Poonoosamy et al., 2020b). Figs. 3–5 show the 
effluent chemistry in comparison with the experimental measurements 
and barite coating patterns from the simulations with three different 
solution supersaturations. 

In the simulation with the highest BaCl2 concentration of 100 mM 
(Fig. 3), uniform barite coating was observed throughout the celestite 
column. The thickness of the coating layer was estimated by counting 
the number of grid cells in which barite was observed (i.e., with a vol-
ume fraction ≥ 10%). By the end of the simulation, which is 500 h as in 
the experiments, the thickness reaches ~5 μm. It is comparable to the 
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experimental data quantified from the SEM images, which is 2.9 ± 0.8 
μm (Table 2). The variations in the experimental data reflect local het-
erogeneity in the pore structures. As the coating layer develops, the 
effluent Ba concentration increases while Sr concentration decreases 
substantially. By hour 500, the Ba concentration reaches ~98 mM and Sr 
concentration drops to 1.6 mM. This indicates an increasing passivation 
of celestite dissolution as also clearly shown in the experimental effluent 
chemistry. In the experiment, a non-zero concentration for Sr was re-
ported towards the end of the experiment, varying between 1.7 and 3.3 
mM for the last 100 h, which confirms the existence of the diffusive flux 
through the coating layer and that the model setup captured the diffu-
sive flux well. 

In the simulation, the effluent chemistry shows four distinct stages: a 
sharp change at the beginning up to ~80 h, a quasi-steady state until 
hour ~300, a steady state for the last ~150 h, and a transition between 
the two steady states. In the first stage, the celestite surface is partially 
covered, and the coverage and thus passivation effect continues to 

increase as the reactions progress (Fig. 3c hour 20 and 80). This stage 
ends when a base layer of barite precipitates with minimum porosity is 
formed (Fig. 3c hour 80). Afterwards, subsequent precipitation occurs 
on the base layer of barite. In this stage, the new precipitates have not 
reached the minimum porosity and thus the diffusion constraint is 
dictated by the more compact base layer (e.g., Fig. 3c hour 200). As 
such, the continuous reaction does not affect effluent chemistry. The 
next steady state stage is reached when the base layer with the minimum 
porosity thickens (e.g., Fig. 3c hour 500). Thus, this behavior is a result 
of the model setup regarding the development of the coating layer and is 
sensitive to the porosity-diffusivity relationship as well, and is further 
discussed below. 

At the intermediate BaCl2 concentration of 10 mM (Fig. 4), the Barite 
coating layer was predicted both in the upstream and the middle sec-
tions, as observed in the experiment. In the simulation, the thickness is 5 
μm at the inlet, and increases along the flow direction and reaches a 
maximum of 10 μm half way through the computational domain. The 
thickness decreases until no coating is present in the downstream sec-
tion. The experimental data also reported a thicker coating layer in the 
middle section (4.8 ± 1.3 μm, Table 2) than in the upstream (2.4 ± 1.5 
μm, Table 2) (Poonoosamy et al., 2020b). About 25% of the celestite 
surface in the computation domain close to the outlet is not covered by 
barite precipitates, and thus celestite dissolution is sustained. Accord-
ingly, the effluent Sr concentration stays at 10 mM throughout the 
simulation. The effluent is depleted of Ba as it is completely consumed 
by the precipitation reaction. The effluent chemistry also reproduced 
concentrations measured in the experiment. 

The simulation for BaCl2 concentration of 1 mM predicted similar 
trends in the effluent chemistry, i.e., constant Sr concentration of ~1.33 
mM and Ba concentration of effectively zero (Fig. 5). The Sr concen-
tration is proportional to the influent Ba concentration because con-
sumption of sulfate by barite precipitation is the key thermodynamic 
driving force for continuous celestite dissolution and the stoichiometric 
ratio between Sr and sulfate is one. With the lowest influent Ba con-
centration, the barite coating layer was only observed in the first several 
millimeters of the computational domain due to fast depletion of Ba in 
the solution. The experimental Sr concentration is slightly lower than 
the modeling results because under this experimental condition the 
precipitating phase is a solid solution that includes Sr, rather than a pure 
barite phase as considered in the model. The simulation results agree 
very well with the experiment, which showed highly localized barite 
precipitation in the first ~500 μm close to the inlet of the column 
(Table 2). The thickness estimate from the simulation peaks at ~25 μm, 
which is comparable to celestite grain size. Significant celestite disso-
lution at the inlet was also observed in the simulations, which is 
consistent with the experimental observation from the SEM image that a 
number of celestite grains were completely replaced by barite (Poo-
noosamy et al., 2020b). The maximum thickness of the coating layer 

Fig. 2. (a) illustration of a streamline in a porous media; (b) the computational domain that follows the streamline; (c) computational domain for the probabilistic 
nucleation simulations, and the orange box highlight the region shown in Figs. 7–9. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
Summary of the setup of the streamline simulations and the probabilistic 
nucleation simulations (L-left, R-right, B-bottom, T-top).   

Streamline simulations Probabilistic nucleation 
simulations 

Focuses Macroscopic precipitation 
patterns and the dependence 
on supersaturation state 

Precipitates’ texture and the 
dependence on 
supersaturation state and 
substrate properties 

Domain 
illustration 

Fig. 2a and b Fig. 2c 

Flow boundary 
conditions 

L - constant average velocity N/A 
R- constant pressure 
B - symmetry 
T – no-slip wall 

Flow initial 
conditions 

Zero N/A 

Reactive 
transport 
boundary 
conditions 

L - constant BaCl2 

concentration 
L - constant BaCl2 

concentration 
R - DI water R - DI water 
B – constant gradient of zero B – constant gradient of zero 
T – constant gradient of zero T – constant gradient of zero 

Reactive 
transport initial 
conditions 

Top domain – celestite + DI 
water 

Top domain – celestite + DI 
water 

Bottom domain – pore space 
+ DI water 

Bottom domain – pore space 
+ DI water 

Celestite 
dissolution 

TST, i.e., Eqn (3) TST, i.e., Eqn (3) 

Barite 
precipitation 

TST, i.e., Eqn (3) Probabilistic heterogeneous 
nucleation, i.e., Eqn(6)-(14) 

Minimum 
porosity in the 
precipitates 

5–10% Effectively zero  
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based on the SEM images reaches 16.3 μm (Table 2). 
In the experiment, the total amount of barite as estimated from the 

effluent chemistry at the end is 4.5, 4.36 and 0.45 mmol for the 100, 10, 
and 1 mM influent solutions, respectively (Poonoosamy et al., 2020b). 
The model predicted very similar trends among the three simulations. 
The barite volume is 2.02, 1.62, and 0.162 mm3, assuming that the 2D 
cross section has a thickness of 1 mm. 

Compared to the continuum-scale reactive transport model per-
formed on the same experimental system in (Poonoosamy et al., 2020b), 
which accounted for the passivation effect by using a surface area model 
that relies on empirical and fitted parameters, our model explicitly 
accounted for surface passivation and the slow-down of the reaction 
process due to diffusion using parameters with specific physical mean-
ings. As a result, we reproduced precipitation patterns that the 
continuum-scale model failed to capture using the same kinetic co-
efficients. Specifically, the thicker coating in the middle section 
observed in the intermediate Ba2+ concentration experiment and the 
sharp precipitation and dissolution front in the low Ba2+ concentration 
experiment. 

In summary, in spite of the conceptual simplifications included in the 
simulations, we observed good agreement between the simulation re-
sults and the experimental observations regarding both fluid chemistry 
and coating patterns. This highlights that the dependence of the co- 
dissolution and precipitation dynamics on the solution supersaturation 
observed in the experiment is primarily controlled by the interplay be-
tween macroscopic flow, diffusion through the coating layer and min-
eral reaction kinetics. Some discrepancy was noted between the 
experiments and the simulations. For instance, under the intermediate 

BaCl2 concentration condition, the coating layer thickness from the 
simulation is about twice of the value that was reported in the 
experiment. 

3.2. Sensitivity analyses 

Additional simulations were performed to evaluate how the model 
assumptions, especially regarding the diffusion process through the 
precipitates, affect the development of the coating layer. The modeling 
results using two different porosity-permeability relationships, i.e., k =

10− 5φ5 and k = 10− 5φ3, are very similar to the results presented above 
and thus are not discussed further (Figs. S1 and S2). In contrast, 
noticeable differences are observed in simulations with varied diffusion 
constraint. Two cases are discussed here. 

In one case, the minimum porosity was reduced from 10% to 5% 
while the local diffusivity-porosity relationship was kept the same. This 
means that local diffusivity limitation can be stronger. In previous 
simulations, the minimum local diffusivity is 0.01 Dm, and it is 0.0025 
Dm here. The overall behavior of the three simulations of different so-
lution chemistries (Fig. 6) are similar to what were shown above and in 
the previous experimental study. However, the thickness of the coating 
layer is consistently smaller. By hour 500, the coating layer is 4 μm thick 
in the simulation with the highest influent BaCl2 concentration. The 
stronger diffusion constraint also results in a sharper and more signifi-
cant change in the effluent concentrations at the early stage, and lower 
Sr steady state concentrations, e.g., ~0.64 mM at hour 500, compared to 
~1.6 mM in the simulation above. For the intermediate influent con-
centration simulation, the modification in the input parameters results 

Fig. 3. Results of the simulation with an 
influent BaCl2 concentration of 100 mM. (a) 
effluent concentration of Ba2+ (green) and 
Sr2+ (magenta) in comparison with the 
experimental measurements (hollow 
squares); (b) thickness of the precipitating 
barite layer, which is calculated by counting 
the number of grid cells in which barite ac-
counts for more than 10% of the volume; 
and (c) maps of barite volume fraction in the 
computational domain at hour 20, 80, 200, 
and 500. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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in a coating layer thickness of 4 μm and 6 μm at the inlet and in the 
middle section, respectively. In addition, the coating layer started to 
develop in the downstream regions as the stronger diffusion constraint 
limited transverse transport of Ba2+ and barite precipitation at the up-
stream, and more Ba2+ is transported to the downstream and becomes 
available for precipitation close to the outlet. Towards the end of the 
simulation, the entire celestite surface becomes coated by barite. As a 
result, the passivation effect manifests in effluent chemistry, i.e., the Sr 
concentration starts to decrease and Ba concentration starts to increase. 

In the other case, the diffusion constraint was relaxed by reducing 
the exponent used in the porosity-diffusivity relationship from 2 to 1.5 
while keeping the same minimum porosity. As a result, the minimum 
local diffusivity is increased by a factor of 3. Similar to changing the 
minimum porosity, the distinct patterns across the three solution 
chemistries are preserved, and the major difference between this subset 
of simulations and the ones reported in Figs. 3–5 is the consistently 
thicker coating layer (Fig. S3). The maximum thickness reaches 7 μm in 
the high supersaturation simulation and at the inlet of the intermediate 
supersaturation simulation. As indicated by the barite volume fraction 
maps, the increase in the thickness - measured by counting the grid cells 
with ≥10% occupied by barite - is not because the compact barite layer 
has thickened. Rather, it is because more barite precipitation has 

developed in the celestite matrix as celestite dissolves and creating local 
porosity, which has higher local diffusivity due to the modified porosity- 
diffusivity relationship. 

Simulations were also performed with grid cell sizes that are 0.5 and 
2.5 times of the default grid cell size. As shown in Figs. S4 and S5, the 
overall precipitation patterns are consistent with the reference simula-
tions (Figs. 3–5), but some quantitative differences are observed in the 
thickness of the precipitation layer. A higher resolution results in a 
thinner coating layer, with the maximum value being 5, 7.5 and 19.5 
μm, respectively, for the high, intermediate and low BaCl2 concentration 
case. The lower resolution simulations show larger thickness, and the 
maximum values are 7.5, 12.5 and 25 μm for the three cases. The dif-
ferences are partly a result of how thickness is measured in the simu-
lations as explained above, but mostly reflect the changes in the extent of 
the precipitation reaction. Our observations are consistent with previous 
studies that showed faster clogging (i.e., a smaller amount of precipi-
tate) in finer meshes (Liu and Jacques, 2017; Marty et al., 2009). This is 
because the smaller grid size helps maintain a sharper concentration 
gradient and thus a sharper reaction front. This is also because the 
formulation of diffusivity is sensitive to the mesh size. With the same 
amount of precipitate, a smaller (larger) grid cell would have a smaller 
(larger) porosity and thus diffusivity. Therefore, reducing the mesh size 

Fig. 4. Results of the simulation with an influent BaCl2 concentration of 10 mM. (a) effluent concentration of Ba2+ (green) and Sr2+ (magenta) in comparison with 
the experimental measurements (hollow squares); (b) thickness of the precipitating barite layer, which is calculated by counting the number of grid cells in which 
barite accounts for more than 10% of the volume; and (c) maps of barite volume fraction in the computational domain at hour 20, 80, 200, and 500. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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has the same effect of increasing the diffusive constraint, and vice versa. 

3.3. Dependence of precipitates texture on fluid chemistry and substrate 
properties 

The sensitivity simulations above further support that the primary 
controlling factor for the experimentally observed dependence on so-
lution supersaturation of the co-dissolution and precipitation dynamics 
is the interplay between flow, diffusion and reaction kinetics. However, 
the secondary effect of the texture and thus diffusion properties of the 
precipitating layer, which are influenced by complex precipitation 
mechanisms, can have a non-negligible effect on the system evolution. 
The sensitivity analyses explored the two key parameters used to 
describe the diffusion process across the coating layer in the model: the 

minimum porosity and the exponent used in the porosity-diffusivity 
relationship. The minimum porosity, also known as residual porosity, 
is dependent on pore-size controlled solubility and/or local transport 
limitations, as discussed in (Deng et al., 2021b; Varzina et al., 2020). The 
evolution of local tortuosity and thus diffusivity in relation to porosity 
within the precipitates is also quite uncertain. While the most basic 
porosity-diffusivity relationship and the most common exponent were 
used in the simulations and showed reasonably good results, variations 
in the relationship or the exponent could introduce noticeable variations 
in the coating layer development. Characterization of the coating layer 
using tools such FIB-SEM can provide critical information for evaluating 
the porosity of the precipitates or for inferring diffusivity. In absence of 
such data, the probabilistic nucleation simulations described in Sec. 2.5 
are used here to initiate investigations that can provide some insights 
regarding the textures and thus transport properties of the precipitates. 
Because we do not make any assumptions of subgrid pore sizes, we 
cannot account for the PCS effect, and the texture within the precipitates 
will be primarily controlled by local transport, in addition to the 
nucleation rate which has a complex dependence on supersaturation and 
substrate properties. 

Fig. 7 shows 30 realizations of the probabilistic nucleation simula-
tions with a BaCl2 concentration of 10 mM (Section 2.5). After 5 h, there 
is limited amount of precipitation. Overall, the barite precipitates coat 
the interface relatively uniformly, except for a few cases in which big 
cluster(s) developed on the interface. In contrast, the simulations with a 
BaCl2 concentration of 100 mM showed more precipitation after 5 h as 
expected. The patterns of the precipitates are also distinct from the 
lower BaCl2 concentration simulations (Fig. 8). More realizations show 

Fig. 5. Results of the simulation with an 
influent BaCl2 concentration of 1 mM. (a) 
effluent concentration of Ba2+ (green) and 
Sr2+ (magenta) in comparison with the 
experimental measurements (hollow 
squares); (b) thickness of the precipitating 
barite layer, which is calculated by counting 
the number of grid cells in which barite ac-
counts for more than 10% of the volume; 
and (c) maps of barite volume fraction in the 
computational domain at hour 20, 80, 200, 
and 500. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   

Table 2 
Thickness of the coating layer from the (Poonoosamy et al., 2020b) experiments, 
estimated from SEM (Scanning Electron Microscope) imaging. Location: 0 mm – 
inlet, 11 mm – outlet. N – number of data points.  

Experiment Location (mm) Coating layer thickness (μm) 

min max mean std (N) 

1 0–11 1.334 4.7 2.9 0.8 (15) 
2 0–3.5 1.149 4.598 2.4 1.5 (5) 

3.5–9.5 2.873 6.897 4.8 1.3 (7) 
9.5–11   0  

3 0–0.5 33.881 16.31 7.4 3.6 (11) 
0.5–11   0   
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clusters of precipitates rather than well distributed precipitation. We 
note that this observation is different from that of (Fazeli et al., 2020), 
which showed more uniform precipitation at the higher supersaturation. 
This is because in our model, crystal growth is modeled as heteroge-
neous nucleation on the mineral itself with a probabilistic rate that has a 
more complex dependence on local supersaturation state (eqns(6-11)), 
whereas in the study of (Fazeli et al., 2020), the crystal growth is 
modeled by a deterministic kinetic coefficient and a linear dependence 
on the supersaturation state. 

To further account for the potential effect of the substrate properties, 
a subset of simulations was performed with the high BaCl2 concentration 
but using a site density (N0) on celestite that is 1000 time lower than that 
on barite. As a result, the kinetics of nucleation on celestite is even 
slower than nucleation on barite compared to the setup when effective 
surface tension (γ) is the only parameter used to prescribe the different 
energetic barriers based on substrate. In this subset of simulations, the 
texture of the precipitates is more distributed (Fig. 9) compared to the 
simulations for which the same site density was used for celestite and 
barite. None of the realizations predicted the formation of big clusters of 
precipitates. 

To evaluate the potential impacts of the distinct textures on the 

diffusion process across the coating layer and thus the co-dissolution and 
precipitation dynamics, the total amount of the precipitates, the porosity 
within the precipitates and surface coverage were quantified for all the 
simulations and plotted in Fig. 10. Barite volume was calculated 
assuming a thickness of 1 mm for the 2D domain. The precipitate 
porosity was calculated as a ratio between the total amount of barite and 
the total volume of grid cells with >10% occupied by barite. It should be 
noted that the porosity measurement defined here is meant for com-
parison across simulations, and would vary based on the threshold value 
used to determine the total volume of grid cells occupied by barite in the 
calculation. The surface coverage was evaluated using the average of 
barite volume fraction at the interface. A larger surface coverage in-
dicates a stronger passivation effect, whereas a larger porosity is likely to 
have weaker transport limitation and thus a larger diffusive flux. The 
amount of barite precipitates is significantly lower for the 10 mM BaCl2 
concentration simulations. The surface coverage is lower in this case, 
whereas the porosity of the precipitates is larger compared to the other 
two tests with the higher BaCl2 concentration. Between the two cases 
with higher BaCl2 concentration, the simulations with lower site density 
on celestite result in slightly more barite precipitation, comparable 
porosity in the precipitates, but noticeably higher surface coverage. 

Fig. 6. Simulation results with a minimum porosity of 5% for an influent BaCl2 concentration of (a–c) 100 mM, (d–f) 10 mM, and (g-I) 1 mM. (a) (d) (g) Effluent 
concentration of Ba2+ (green) and Sr2+ (magenta). (b) (e) (h) Thickness of the precipitating barite layer, which is calculated by counting the number of grid cells in 
which barite accounts for more than 10% of the volume. (c) (f) (i) maps of barite volume fraction in the computational domain at hour 500. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The larger barite volume and surface coverage for the case with 
lower site density on celestite may appear to be counter-intuitive. In this 
case, as nucleation on celestite becomes much slower, more reactants 
are consumed by faster nucleation on barite. This would also trigger 
positive feedback with surface area, as more barite surface being 
created, more nucleation on barite is expected. The higher surface 
coverage is also a result of our conceptualization of the nucleation 
process, which doesn’t consider the crystalline orientation. This means 
that nucleation perpendicular to and parallel to the interface is not 
differentiated. As such, a grid cell on the celestite surface that also 
neighbors a grid cell of barite can have barite precipitation as a result of 
growth on the barite surface, which has the same effect of coating the 
celestite substrate. 

The porosities of the precipitates are in general high because the 
model allows precipitation in neighboring grid cells even if the grid cell 
itself is not completely occupied by the precipitate. While the porosity 
within each grid cell can approach zero in the model, the actual porosity 
evolves as a result of the nucleation kinetics and transport limitation in 
the neighboring grid cells. It is expected that additional constraint - such 
as only allowing precipitation in neighboring grid cells when a threshold 
volume fraction is reached in the ‘parent’ grid cell (Chen et al., 2014; 
Yang et al., 2021) – will result in more compact precipitates. 

For the probabilistic nucleation formulations, it has been shown that 
the stochastic nature would be smoothed out if the spatial and temporal 
resolutions of the simulations are too coarse (Nooraiepour et al., 2021a). 
In our study, the resolutions are fine enough to maintain the relevance of 
the probabilistic treatment, however, we do observe sensitivity to the 
mesh resolution that is similar to the streamline simulations (Fig. S6). 
With the finer resolution, there is less barite precipitation. The range of 
porosity and surface coverage values remain comparable. 

3.4. Modeling limitations and prospects 

The micro-continuum model is a multi-scale approach in which a 
continuum domain and a pore-scale domain can be simulated simulta-
neously. While with certain configurations (e.g., extremely small local 
porosity is used in solid cells), the micro-continuum model is equivalent 
of a pore-scale model (Soulaine et al., 2017) and can be used to capture 
crystal morphology (Yang et al., 2021); it offers a unique capability of 
capturing sub-grid processes. This feature is especially useful in 
modeling precipitation systems in which nano-/micro-pores are present 
within the precipitates. Treating the precipitates as a continuum enables 
considerations of diffusive flux through the precipitates, and thus 
explicitly modeling of the dissolution of the primary mineral phase and 
the precipitation of the secondary mineral, as demonstrated in our 
study. The continuum formulations of subgrid properties and processes 
within the precipitates vary with the conceptualizations. 

In most cases, description of the transport properties (e.g., diffu-
sivity) follows the traditional continuum model approach and uses 
empirical relations (e.g., Archie’s law), as is the case in the streamline 
simulations. This approach is simple, but also subject to the same 
challenges faced by continuum models, i.e., large uncertainties can be 
introduced through the empirical parameters (e.g., cementation expo-
nent). These uncertainties can be constrained by measurements of these 
properties within the precipitates. 

For modeling of the precipitation processes, the backbone modeling 
concepts of the micro-continuum model shares some similarities to those 
of other pore-scale models, such as the Lattice Boltzmann Model, which 
means that similar conceptualizations can be considered. For example, 
the probabilistic nucleation process has been readily implemented in our 
micro-continuum model and the LBM. For another example, a threshold 
value is typically used in LBM pore-scale models to determine whether a 

Fig. 7. Maps of the barite precipitation from 30 realizations of the probabilistic nucleation simulations with a BaCl2 concentration of 10 mM and the same nucleation 
density on both celestite and barite. The domain is trimmed to focus on the interface. 
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grid becomes a solid cell and thus no further precipitation (Chen et al., 
2014; Kang et al., 2010); whereas we used the minimum-porosity in our 
streamline simulations. In our probabilistic nucleation simulations, the 
remaining porosity within the precipitates is a result of local transport 
limitation. In the LBM model of (Varzina et al., 2020), residual porosity 
resulting from PCS effect was studied. It was assumed that within a grid 
cell, crystals of given sizes and patterns (e.g., distance between crystals) 
are initialized and followed by the growth of the crystals. The subgrid 
pore size is tracked such that pore-size controlled solubility can be 
calculated. As a result, the residual porosity – which is equivalent of 
minimum-porosity in the streamline simulations – is calculated rather 
than prescribed a priori. This type of conceptualization, admittedly re-
quires more information to parameterize, can provide further mecha-
nistic understanding. 

It cannot be over-emphasized that while different conceptual models 
can be readily implemented in the micro-continuum model, direct ob-
servations and theoretical advances are critical for developing and 
testing conceptual models and their numerical implementations. 

4. Conclusion 

In this study, using a micro-continuum pore-scale reactive transport 
model, we investigated the geochemical alteration of a co-dissolution 
and precipitation system. The simulation results demonstrated that the 
dynamic development of the coating layer at the macroscopic scale is 
primarily controlled by the interactions between advective flow, diffu-
sion through the coating layer, and the mineral reaction kinetics. 
Reactive transport modeling that considers these interactions explicitly 
successfully reproduced previous experimental observations of both 
fluid chemistry and precipitation patterns under all three saturation 
states. In contrast, previous continuum scale reactive transport modeling 

results of the same experimental system, while reproducing the fluid 
chemistry using empirical relations to account for the passivation effect, 
failed to capture some distinct features in the precipitation pattern at the 
lower saturation states. Furthermore, sensitivity analyses of the diffu-
sion process across the coating layer have illustrated that the diffusion 
properties of the coating layer and thus the texture of the precipitates 
play a secondary but non-negligible role in controlling the dynamic 
evolution of the coating layer. 

By adding a probabilistic nucleation module, we illustrated that the 
textures of the precipitates have a complex dependence on the satura-
tion state and the properties of the substrate. For instance, the higher 
supersaturation state is more likely to result in clusters of precipitates, 
higher surface coverage and lower porosity in the precipitates. These 
exploratory simulations highlight the need of future experimental 
studies that provide critical mechanistic information to verify and 
improve conceptualizations of the modeling of ICDP processes. Our 
model builds on the framework of the classical nucleation theory and 
includes key components of current theoretical understanding of the 
system. Thus, the model serves as a unique tool to illustrate the 
dependence of precipitates’ texture on fluid saturation and kinetic 
properties of the substrate, i.e., what would be expected based on cur-
rent understanding. Because we can clearly identify the simplifications 
or assumptions made in the model, future studies of cross-model com-
parison and comparisons with direct experimental observations can help 
us better pinpoint areas for improvement. Such modeling effort can also 
help direct experimental and characterization efforts to focus on key 
unknowns. The framework developed here can also be adapted to 
incorporate more mechanistic descriptions when available, which will 
provide necessary information to improve treatment of the passivation 
effect at the continuum scale. Ultimately, it will be a combination of 
experimental and modeling tools that will advance our understanding of 

Fig. 8. Maps of the barite precipitation from 30 realizations of the probabilistic nucleation simulations with a BaCl2 concentration of 100 mM and the same 
nucleation density on both celestite and barite. The domain is trimmed to focus on the interface. 
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Fig. 9. Maps of the barite precipitation from 30 realizations of the probabilistic nucleation simulations with a BaCl2 concentration of 100 mM and a nucleation 
density that is 1000 times lower on celestite than that on barite. The domain is trimmed to focus on the interface. 

Fig. 10. (a–c) Porosity within the precipitates in relation to the barite volume, and (d–f) surface coverage in relation to the barite volume. (a,d) 10 mM BaCl2, (c,e) 
100 mM BaCl2, and (c,f) 100 mM BaCl2 with 1000x N0. The porosity is calculated as a ratio between the total amount of barite and the total volume of grid cells with 
>10% occupied by barite. Barite volume is calculated assuming a thickness of 1 mm for the 2D domain. The surface coverage is calculated as the average of barite 
volume fraction at the interface. 
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ICDP processes and their impact at larger scales. 
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